Approximation Algorithms

Lecture 2



Max . M@?@h)ﬁ n P
Q—%? ﬂz\rQ[\eﬂ)V \[\OQQ/ ’HW ajjtj{ Hﬁ\m
et _;_r aF\WoﬁfMa eg

e asttime:

* Introduction to approximation algorithms

e Unweighted SET COVER and MAX COVERAGE: Greedy algorithmswithlnn + 1
and1 — 1/e approximation guarantees respectively

* f-approximation for Weighted SET COVER via deterministic rounding of LP
solution
* fisthe maximum number of sets that any elementis part of

Why are poly-time algorithms with additive approximation guarantees impossible

to obtain in general unless P = NP?
Will upload a short video with a proof for the case of TSP




Today:

e SET COVER continued

e Dual rounding
e Primal dual method



Recall

* Weighted SET COVER R
oy

* Given universe U of nelementsey, ..., e, and family F = {Fy, ... E,, } of subsets of
U, where F; hasweightw; fori € [m], output a min-weight subset of F covering
theelementsin U e
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* View the SET COVER problem from the following perspective

e Elementsareindividualsandsetsin F are social groups
* Weightofasetisthe total social status of that group
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* Want to charge elements a price to “be covered” by a set
e Maximize the total price paid by all elements
e Sum of prices paid by elementsin a setis at most the weight of the set

* \We now write another LP related to (P)

-

* Lety, fore € U denote the price paid by an element



 LP corresponding to the “price charging problem”




* This latter LP (D) is called the “dual” of the original LP (P)

=

e There is a mechanical way to write the dual of any linear program —we will
not cover itin this course

e Butyou will see sufficient examples where we write duals to LPs

e Readingon LPs: Appendix A of Williamson & Shmoys

* Dual has a variable for each constraint in primal

e Dual has a constraint for each primal variable



* Adual program has interesting connections to its primal program

fostbe

» Weak Duality: For any‘solution {Xi}ie[m to the primal program and any %@ﬁ\HQ
solution {y, }eey to the dual program







* Corollary: Dual optimal value is a lower bound on primal optimal value!

e Strong Duality Theorem: If both primal and dual have feasible solutions,
then their optimal values are equal.

IT{x; }iepm) and {ye }eey are primal optimal and dual optimal solutions,
then

2ieevYe = Lie[m) WiXi



f-approximation algorithm from the optimal solution for the dual LP

Algorithm

o Let{y,}.ey be the dual optimal solution
* Fori € |m]:

* ifthe dual constraint for F; is such that Y, Ye = Wy, then add F; to the cover



* Claim: Outputis a valid set cover

* Proof:

* Ifanelemente is not covered, then for every set F; containing e, the dual
constraintis not “tight”.

* Canincrease the value of y, until the first such constraint s tight!
e Thisincreases the dual solution value without violating any dual constraints

e Contradiction!



* Claim: Solution returned is an f-approximation to SET COVER
* Proof:
 Foreach F; picked, we know that dual constraintis tight
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eeF;
* Weight of solution output = Sum of w;’s for the F;’s picked
= Sum of corresponding y,’s

e Lastsumisatmost f - X .ey Ve, since each dual variable belongs to at
most f constraints

* By weak duality:
f 'ZeEUye* < f .ZiE[m] sz < f -OPT



Complementary Slackness

 \We know that:

z:VeSZye'(z x]-)= z (23@)@2 XjWj

ecU eclU J:€e€F je|m] e€F ; je|m]

» Foroptimal solutions {x; }iefm] and {Ye }eeu. 2l e inequalities are
equalities! . V !
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Converse is also true: Feasible solutions satisfying

Complementary Slackness complementary slackness are optimal
* We know that:

ZyeSZye°(z xj)= 2 xj'(Zye)S z XjWj

ecU ecU J:€e€F jE€|m] e€F ; j€|m]

» Foroptimal solutions {x; }ie[m] and {ye }eeu. all these inequalities are
equalities!
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* Inouralgorithm in last class, we added a set F; to the solution if x;” = 1/f

b fo > 0

* By complementary slackness, this implies that, for each set F; added to the
set cover (by the algorithm in last class),

 So, this same setis also added to the solution by the dual rounding algo as

well
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* Did we need to first compute a dual optimal solution in the algorithm
today?

e Computing the optimal solution toan LP is an expensive operation
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* Did we need to first compute a dual optimal solution in the algorithm

today? ) chgg}pfg Soty Hon
—
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1. Beginwithy, « Qfore € UandC « @ e
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2. While C is notyetasetcover:——=

1. Increase the dual variable y, for some uncovered element e € U until some dual
constraint, say, for F;, goes tight, where e € F;

Add Fi toC
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* Did we need to first compute a dual optimal solution in the algorithm
today?

1. Beginwithy, « Ofore € UandC « @

2. While C is notyetaset cover:

1. Increase the dual variable y, for some uncovered elemente € U until some dual
constraint, say, for F;, goes tight, where e € F;

2. Add Fi toC "
Fxexverse:

1. Output € Show that this algorithm has the same

guarantees as the dual rounding algorithm




* Reading Exercise: Section 1.6 from(Williamson & Shmoys
B —= lheevewmn I+ 171

* In n factor approx. greedy algorithm for weighted SET COVER
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* Generalization of the greedy algorithm seen in last lecture

* Next lecture: Randomized rounding for SET COVER
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