

Approximation Algorithms

Lecture 2

Max. Matching in P

efficient linear time algorithm
that $\frac{1}{2}$ -approximates

- Last time:
 - Introduction to approximation algorithms
 - Unweighted SET COVER and MAX COVERAGE: Greedy algorithms with $\ln n + 1$ and $1 - 1/e$ approximation guarantees respectively
 - f -approximation for Weighted SET COVER via deterministic rounding of LP solution
 - f is the maximum number of sets that any element is part of

Why are poly-time algorithms with additive approximation guarantees impossible to obtain in general unless $P = NP$?

Will upload a short video with a proof for the case of TSP

Today:

- SET COVER continued
 - Dual rounding
 - Primal dual method

Recall

- Weighted SET COVER

- Given universe U of n elements e_1, \dots, e_n and family $F = \{F_1, \dots, F_m\}$ of subsets of U , where F_i has weight w_i for $i \in [m]$, output a min-weight subset of F covering the elements in U

LP:

$$\begin{aligned} \min \quad & \sum_{i \in [m]} w_i x_i \\ \text{subject to} \quad & \sum_{i: e \in F_i} x_i \geq 1 \quad \forall e \in U \\ & x_i \geq 0 \end{aligned} \tag{P}$$

Annotations:

- A red arrow points from the word "nonnegative" to the constraint $x_i \geq 0$.
- A red arrow points from the word "weight" to the term w_i in the objective function.
- A red arrow points from the word "subset" to the constraint $\sum_{i: e \in F_i} x_i \geq 1$.

- View the SET COVER problem from the following perspective

- Elements are individuals and sets in F are social groups
- Weight of a set is the total social status of that group

\rightarrow no negative

- Want to charge elements a price to “be covered” by a set
- Maximize the total price paid by all elements
- Sum of prices paid by elements in a set is at most the weight of the set

- We now write another LP related to (P)

- Let y_e for $e \in U$ denote the price paid by an element

- LP corresponding to the “price charging problem”

Primal objective fn value

Dual obj.

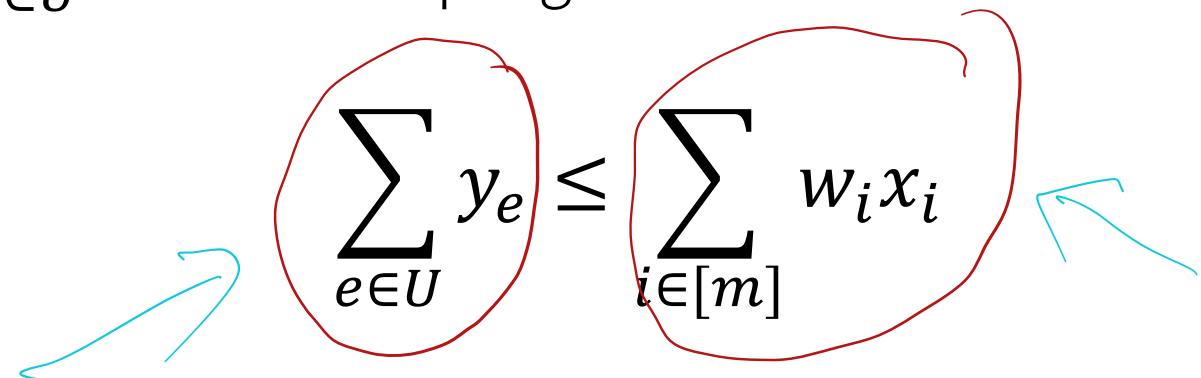
$$\begin{aligned}
 & \max \sum_{e \in U} y_e \\
 (D) \quad & \sum_{e : e \in F_j} y_e \leq w_j \quad \forall j \in [m] \\
 & y_e \geq 0 \quad \forall e \in U
 \end{aligned}$$

- This latter LP (D) is called the “dual” of the original LP (P)

D

- There is a mechanical way to write the dual of any linear program – we will not cover it in this course
- But you will see sufficient examples where we write duals to LPs
 - Reading on LPs: Appendix A of Williamson & Shmoys
 - Dual has a variable for each constraint in primal
 - Dual has a constraint for each primal variable

- A dual program has interesting connections to its primal program
- Weak Duality: For any ^{feasible} solution $\{x_i\}_{i \in [m]}$ to the primal program and any ^{feasible} solution $\{y_e\}_{e \in U}$ to the dual program

$$\sum_{e \in U} y_e \leq \sum_{i \in [m]} w_i x_i$$


Proof:

$$\left(\sum_{e \in U} y_e \right)$$

$$= \sum_{e \in U} y_e \cdot 1$$

$$\leq \sum_{e \in U} y_e \cdot \left(\sum_{i \in [m]} x_i \right)$$

$$= \sum_{i \in [m]} x_i \cdot \sum_{e \in U: e \in F_i} y_e \leq w_i$$

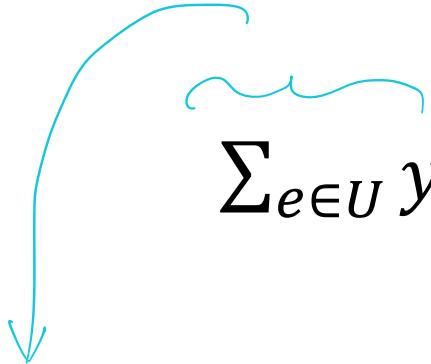
$$\sum_{\substack{i \in [m]: \\ e \in F_i}} x_i \geq 1$$

Used the
fact that
we have feasible solutions.

- **Corollary:** Dual optimal value is a lower bound on primal optimal value!
- **Strong Duality Theorem:** If both primal and dual have feasible solutions, then their optimal values are equal.

If $\{x_i^*\}_{i \in [m]}$ and $\{y_e^*\}_{e \in U}$ are primal optimal and dual optimal solutions, then

$$\sum_{e \in U} y_e^* = \sum_{i \in [m]} w_i x_i^*$$

Value of dual optimal solution  Value of primal optimal solution

f -approximation algorithm from the optimal solution for the dual LP

Algorithm

- Let $\{y_e^*\}_{e \in U}$ be the dual optimal solution
- For $i \in [m]$:
 - if the dual constraint for F_i is such that $\sum_{e \in F_i} y_e^* = w_i$, then add F_i to the cover

- Why does this output a set cover?
- What is the approximation guarantee?

- **Claim:** Output is a valid set cover

- **Proof:**

by contradiction

- If an element e is not covered, then for every set F_j containing e , the dual constraint is not “tight”.

- Can increase the value of y_e^* until the first such constraint is tight!

- This increases the dual solution value without violating any dual constraints

- Contradiction!

$$\forall F_j \text{ s.t. } e \in F_j$$

$$\sum_{e' \in F_j} y_{e'}^* < w_j$$

$$\sum_{e \in F_j} y_e^*$$

- **Claim:** Solution returned is an f -approximation to SET COVER

- Proof: *set as part of solution*

- For each F_i picked, we know that dual constraint is tight

$$\sum_{e \in F_i} y_e^* = w_i$$

F_1, F_{100}, F_{29}

$w_1 + w_{100} + w_{29}$

- Weight of solution output = Sum of w_i 's for the F_i 's picked *as part of Cover*
 $=$ Sum of corresponding y_e^* 's

- Last sum is at most $f \cdot \sum_{e \in U} y_e^*$, since each dual variable belongs to at most f constraints

- By weak duality:

$$f \cdot \sum_{e \in U} y_e^* \leq f \cdot \sum_{i \in [m]} x_i^* \leq f \cdot \text{OPT}$$

Weak duality

primal LP is a relaxation of

SET COVER IP

S-cover output

$$\sum_{e \in S} \sum_{e \in F_i} y_e^* = w_j$$

Complementary Slackness

- We know that:

$$\sum_{e \in U} y_e \leq \sum_{e \in U} y_e \cdot \left(\sum_{j: e \in F_j} x_j \right) = \sum_{j \in [m]} x_j \cdot \left(\sum_{e \in F_j} y_e \right) \leq \sum_{j \in [m]} x_j w_j$$

dual is feasible

↑
dual obj. fn. value

↑
strong duality holds

↑
primal obj. fn. value

- For optimal solutions $\{x_i^*\}_{i \in [m]}$ and $\{y_e^*\}_{e \in U}$, all these inequalities are equalities!

$$\{ y_e^* > 0 \} \Rightarrow \sum_{j^0: e \in F_j^0} x_j^* = 1 \quad \forall e \in U$$

$$\{ x_j^* > 0 \} \Rightarrow \sum_{e \in F_j^0} y_e^* = w_j \quad \forall i \in [m]$$

$$\sum_{e \in U} y_e^* = \sum_{e \in U} y_e^* \cdot \left(\sum_{i: e \in F_i} x_i^* \right)$$

Whenever $y_e^* > 0$ $\sum_{i: e \in F_e} x_i^* = 1$

Converse is also true!

If two feasible solns. satisfy complementary slackness, then they are optimal

Complementary Slackness

Converse is also true: Feasible solutions satisfying complementary slackness are optimal

- We know that:

$$\sum_{e \in U} y_e \leq \sum_{e \in U} y_e \cdot \left(\sum_{j: e \in F_j} x_j \right) = \sum_{j \in [m]} x_j \cdot \left(\sum_{e \in F_j} y_e \right) \leq \sum_{j \in [m]} x_j w_j$$

- For optimal solutions $\{x_i^*\}_{i \in [m]}$ and $\{y_e^*\}_{e \in U}$, all these inequalities are equalities!

$$y_e^* > 0 \quad \Rightarrow \quad \sum_{j: e \in F_j} x_j^* = 1 \quad \forall e \in U$$

$$x_j^* > 0 \quad \Rightarrow \quad \sum_{e \in F_j} y_e^* = w_j \quad \forall i \in [m]$$

- In our algorithm in last class, we added a set F_i to the solution if $x_i^* \geq 1/f$

$$\downarrow \rightarrow x_i^* > 0$$

- By complementary slackness, this implies that, for each set F_i added to the set cover (by the algorithm in last class),

$$\sum_{e \in F_i} y_e^* = w_i$$

- So, this same set is also added to the solution by the dual rounding algo as well

Suppose $I \subseteq [m]$ is the collection of sets picked

by primal
rounding
algo.

$$\boxed{I \subseteq I'}$$

$$I' \subseteq [m]$$

"

"

" "

• dual
rounding algo

- Did we need to first compute a dual optimal solution in the algorithm today?
- Computing the optimal solution to an LP is an expensive operation

Only property of dual solution the we used
in today's algo:

$$(i) \quad \sum_{e \in U} y_e \leq \text{OPT}$$

(ii) $\{y_e\}_{e \in U}$ is a feasible solution

- Did we need to first compute a dual optimal solution in the algorithm today?

$\xrightarrow{\text{dual feasible solution}}$

1. Begin with $y_e \leftarrow 0$ for $e \in U$ and $C \leftarrow \emptyset$
2. While C is not yet a set cover:
 1. Increase the dual variable y_e for some uncovered element $e \in U$ until some dual constraint, say, for F_i , goes tight, where $e \in F_i$
 2. Add F_i to C
1. Output C

Let $\varepsilon = \min_{j: e \in F_j} \left(w_j^* - \sum_{e' \in F_j} y_{e'} \right)$

$y_e \leftarrow y_e + \varepsilon$

- Did we need to first compute a dual optimal solution in the algorithm today?

1. Begin with $y_e \leftarrow 0$ for $e \in U$ and $C \leftarrow \emptyset$
2. While C is not yet a set cover:
 1. Increase the dual variable y_e for some uncovered element $e \in U$ until some dual constraint, say, for F_i , goes tight, where $e \in F_i$
 2. Add F_i to C
1. Output C

Exercise:

Show that this algorithm has the same guarantees as the dual rounding algorithm

- Reading Exercise: Section 1.6 from Williamson & Shmoys

→ Theorem 1.11

- $\ln n$ factor approx. greedy algorithm for weighted SET COVER

$\downarrow H_n = n^{\text{th}} \text{ harmonic number}$

- Generalization of the greedy algorithm seen in last lecture

- Next lecture: Randomized rounding for SET COVER

Dual fitting

